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3 Sobolev Spaces

Exercise 3.1. Since the function R 3 v — |v|P is convex, by Jensen’s inequality we have

that for every x € (); it holds
1 / L | /
— [ u <= [ [uf
o7 Qi o4 Qi

o0 [e.9]
fuslly, =3 [ fuste)rde <3 [ Julr =l
i=1 7 @i i=1 7 Qi

Let € > 0 and v € C®°(R?) be such that ||u — v||» < &. Then

Jus ()" =

Therefore

|u—usl[rr <[lu—vllze + |[v = vsle + |lvs — us]| e
<e+ v —wsl[rr + [[(v — w)s|lzr
<e+ |Jv — vs]|ze + v — ul| e
<22+ ||v — 3|0

(1)

Since v is Lipschitz we have that ||v—wv;s|| L~ < nLip(v)d and since v has compact support,
then ||v — vs||L~ — 0 implies that ||[v — vs]|» — 0 for every p € [1, 00). In particular, by
(1), it holds

limsup ||u — ug||r < 2e
6—0

and since € > 0 is arbitrary, this shows that us — u as § — 0.

Exercise 3.2. We first assume that § is relatively compact in LP(£2). Assume by contra-
diction that there exist ¢ > 0 and a sequence (u,) C § such that for every n € N it
holds [|un, — (wn)1/nllzr@) = €. By compactness there exists a subsequence (that we do
not relabel) u, — @ in LP(Q) for some @ € LP(Q). In particular there exists & € N such
that for every k > k it holds ||uj, — || zr(o < /3. By the previous exercise we have that
there exists k such that for every k > k it holds ||u — u, Jkellze@) < €/3, therefore for
k>k, %, we get the contradiction

e < |lur — (ur) 1kl ey < luk — || o) + 1@ = Tayill o) + @16 — (Ue)1/kl @) < €.

Let us now prove the converse implication : since LP(Q2) is a complete metric space,
relative compactness is equivalent to total boundedness. Therefore given ¢ > 0, we look
for a finite number of balls of radius e in LP(Q2) which cover §. Let us first choose &
relative to £/3 and let us cover  with finitely many cubes {Q;}~, of side § as in the
previous exercise.
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Since § is bounded, then there exists K > 0 (depending on d) such that for every
u € § it holds ||U6||Loo < K. We now propose a finite subset /' C LP(2) and we will
check that § C J,cp B ( ), where B.(u) denotes the ball of center u and radius € in
L?(€2), namely that for every u € § there exists v € F' such that ||u — v||zr@) < €. Let
v > 0 be a constant that we will choose later, the candidate F'is defined by

F={ve LP(Q):vis constant in each Q); and v(x) € vZ N [-K, K|Vx € Q}.

Given u € §, we can take v € F' such that ||v — uz||L=(0) < v. Let us estimate

lu = vllzogey < Il = usllzoey + 1907 [lu5 = vllzeie) < = +\QIW

Therefore, taking v = ——, we have that |ju — v||1rq) < €. Since € > 0 is arbitrary, this
3|QP

shows that § is totally bounded and concludes the proof of this implication.

Let us now prove the second point : let ) be a cube of side § > 0 and assume first

that uw € WH(Q) N C*°(Q). Then
dr < / / lu(z) —u(y)|dydz.  (2)

o= vsloia) = | ) = 55 [ty
Q

We estimate |u(x) — u(y)| < fol |Du(x + t(y — x))||y — x|dt and since for every z,y € @,
we have |z — y| < §\/n, we can continue the estimate (2)

1
n
5\71/—_1/// |Du(x + t(y — x))||y — x|dtdydx
o 1/ //‘DM” — o))lly — x|dydudt
Du(z)|dzdzdt
5n l/td//ltx+tQ| |
o 1/ td//|DU 2)| 11— t)e+qy (2)dzddt,

where we used Fubini, the change of variable z = x + ¢(y — x) and in the last line
we observed that, since @) is convex, for every z,y € () and every t € [0,1], the point
r+tly—x) € Q. We want to apply Fubini to exchange the integrals in dz and dz, so we
observe that

|u — us||L1(q) <

)

ze{(l-thr+tQ} L€ T
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2)| / x)dxdzdt

t—d z)\cd( — 1_t )dzdt (4)

—mln{ Q),L (1—t )} Q]Du z)|dzdt.
L
(

We continue in (3) :

i = sl td

For t < 5, we have t/(l —t) < 2t < 1 so that min {£%(Q), £ ({5Q)} = (20)°LHQ)
and for ¢t > 1, we have min {Ed Q), L (5Q)} = LYQ) < (2¢)L4Q). We therefore
continue in (5) :

Hu—u(5||L1(Q)<6>/_1 i (2t LN Q /|Du )|dzdt

:2d\/35||DU||L1(Q)

So far we showed the estimate for smooth functions inside a cube. In order to deal with
the general case let ' C R? be a bounded set such that Q + B(0,1) C €' in such a way
that there exists an extension operator E : WP(Q) — W, ?(Q'). Being C>°(€') dense in
W, P(Q), we can find (u.). C C2(€) such that |ju. — E(u)||wir@y — 0. Moreover, for
every A > 0, we can find a set 1) such that
1. QCQy, cc
2. ) is the union of essentially disjoint n-cubes of side o, where o = () is chosen
so small that
— 0 <9;
— LYNN\Q) < 0}
— IDE(u)| L1000 < A
We can then compute

(5)

[ — usl| 10y <[[E(u) — usll 1y
< E(u) = uellpray) + [lus — uellL1ay)
<E(u) = vell iy + D llus — uelliag)
Qe
<||E(u) — v gy +2Vdo Y || Duel|piq)
Qe
<[ E(u) = tel| 110y + 2Vd0| Duc | 11 () + 2V dS|| Duc| 00,

where in the fourth inequality we used the estimate proved before. Passing to the limit
as ¢ — 0 we get

lu — us| 1) <2Vd6|| Dul| 11 gy + 29V dS| DE(u)]| 11 ay\0
<29/ d6|| Dul| 1 ) + 24V doN
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and passing to the limit as A\ — 0 we get the claim
[u — s L1y < 2Vd5| Dul| 110y

Exercise 3.3. We can assume that Q@ = (0,1) x R"™! for some [ > 0 since, up to
translation Q is contained in a set of the form (0,1) x R"~! and we can extend all the
elements of W,?(Q) to elements of Wy((0,1) x R*) by setting them equal to 0 in
(0,1) x R*\ Q. By density of C2°(Q) in Wy(Q) it is sufficient to prove the statement
for u € C(Q2) as long as we obtain a constant C' independent of u. Let us denote by
r = (z,y) with z € (0,1), y € R"!, the coordinates of a generic point z € Q. For every
(z,y) € it holds

we) = [ gt

so that

l
u(z,y)| < / |Dul(t,y)dt = | Du(-, )| zron < 1DuC ) |oon !
0

Notice that the estimate depends only on y and not on z, therefore we have

Jall oy = [ fuCes)Pddy = /(/ ule )Pz dy
< [ ([ (outot ) dz)

'+1
Sl N L=
'+1
=[P ||Du||ip(g)‘
This proves the first estimate, the second one is an immediate consequence.

Exercise 3.4. We follow the strategy of the proof of Poincaré-Wirtinger inequality from
the lecture.

Suppose by contradiction that there exists a sequence (up)pen such that [{u, = 0} >

o and ||up||ze) > hl|[Dup||r(), and consider the renormalized sequence
Up

vp = —————

[[n | Lo (@)

We have therefore that |[on||wir@) = ||vnllLe) + || Dunllr@) < 1+ 3, so that (vy)y is a
bounded sequence in W'?(Q). By Rellich-Kondrasov theorem, there exists u € LP(Q) and
a subsequence (that we do not relabel) such that v, — v in LP(€2). Since |lvp||rrq) = 1
for every h, then |[T]|1r) = 1. Moreover, since || Duvy||rr() — 0 as h — oo, then exactly
as in the proof of Poincaré-Wirtinger inequality, we deduce that Dv = 0, and, since ) is
connected this implies that ¥ is constant. Since [{v;, = 0}| > a, and the L' convergence
implies the pointwise a.e. convergence up to subsequences, then also [{t = 0}| > «a. Being
U constant, this shows that ¥ = 0 and this contradicts ||7]|zr@) = 1.
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Exercise 3.5. The fact that ||-| is a norm follows immediately from the fact that ||- || 1)
is a norm and the linearity of the divergence operator, therefore we need to check that
W.P(Q) is complete. Let uf = (u¥, ... uF) be a Cauchy sequence in W,7(Q). In particular
u* is a Cauchy sequence in (LP(€))? and divu* is a Cauchy sequence in LP(Q). Therefore,
being (LF(£2))" and LP()) complete, there exist w € (LP(Q))" and v € LP(Q2) such that
u® — win (LP(Q))" and divu® — v in LP(Q). In order to complete the proof we need to
prove that v = div. For any test function ¢ € C2°(§2) and every k € N it holds

/uk -Vpdr = / divu*odz
Q Q

and letting £ — oo on both sides we obtain

/H-Vapdx:/vgod:v,
Q Q

Exercise 3.6. We check that | - |y, is a seminorm, namely that it is positively homo-
geneous (trivial) and it satisfies the triangular inequality, then we show that the space is
complete.

Given f € W9P(R?), we define ¢(f) € LP(R? x R?) by
@)~ f)

& — g

namely v = divu.

() (x,y)

Given f,g € WP (R?), we have that ¢(f + g) < ¥(f) + 1(g) pointwise a.e., therefore by
the triangular inequality in LP(R? x RY), we have

[D(f + Dl r@ixrey < () +D(9) | Lr@axray < 1V o@axray + [19(9) | praxray,

namely the triangular inequality holds true.

Let f, be a Cauchy sequence in W%P(R?). Then f,, and ¢(f,) are Cauchy sequences
in LP(RY) and LP(R? x R?) respectively. In particular they converge to some f € LP(R?)
and g € LP(RY x RY). We still need to check that g = ¢(f). This is true because, up to
subsequences, we can assume that f,, and ¢(f,) converge a.e.
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