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3 Sobolev Spaces

Exercise 3.1. Since the function R ∋ v 7→ |v|p is convex, by Jensen’s inequality we have
that for every x ∈ Qi it holds

|uδ(x)|p =
∣∣∣∣ 1
δd

∫
Qi

u

∣∣∣∣p ≤ 1
δd

∫
Qi

|u|p.

Therefore
∥uδ∥p

Lp =
∞∑

i=1

∫
Qi

|uδ(x)|pdx ≤
∞∑

i=1

∫
Qi

|u|p = ∥u∥p
Lp .

Let ε > 0 and v ∈ C∞
c (Rd) be such that ∥u− v∥Lp < ε. Then

∥u− uδ∥Lp ≤∥u− v∥Lp + ∥v − vδ∥Lp + ∥vδ − uδ∥Lp

≤ε+ ∥v − vδ∥Lp + ∥(v − u)δ∥Lp

≤ε+ ∥v − vδ∥Lp + ∥v − u∥Lp

≤2ε+ ∥v − vδ∥Lp .

(1)

Since v is Lipschitz we have that ∥v−vδ∥L∞ ≤ nLip(v)δ and since v has compact support,
then ∥v − vδ∥L∞ → 0 implies that ∥v − vδ∥Lp → 0 for every p ∈ [1,∞). In particular, by
(1), it holds

lim sup
δ→0

∥u− uδ∥Lp ≤ 2ε

and since ε > 0 is arbitrary, this shows that uδ → u as δ → 0.

Exercise 3.2. We first assume that F is relatively compact in Lp(Ω). Assume by contra-
diction that there exist ε > 0 and a sequence (un) ⊂ F such that for every n ∈ N it
holds ∥un − (un)1/n∥Lp(Ω) ≥ ε. By compactness there exists a subsequence (that we do
not relabel) uk → u in Lp(Ω) for some u ∈ Lp(Ω). In particular there exists k ∈ N such
that for every k > k it holds ∥uk − u∥Lp(Ω < ε/3. By the previous exercise we have that
there exists k̃ such that for every k > k̃ it holds ∥u − u1/k∥Lp(Ω) < ε/3, therefore for
k > k, k̃, we get the contradiction

ε < ∥uk − (uk)1/k∥Lp(Ω) ≤ ∥uk − u∥Lp(Ω) + ∥u− u1/k∥Lp(Ω) + ∥u1/k − (uk)1/k∥Lp(Ω) < ε.

Let us now prove the converse implication : since Lp(Ω) is a complete metric space,
relative compactness is equivalent to total boundedness. Therefore given ε > 0, we look
for a finite number of balls of radius ε in Lp(Ω) which cover F. Let us first choose δ
relative to ε/3 and let us cover Ω with finitely many cubes {Qi}N

i=1 of side δ as in the
previous exercise.
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Since F is bounded, then there exists K > 0 (depending on δ) such that for every
u ∈ F it holds ∥uδ∥L∞(Ω) < K. We now propose a finite subset F ⊂ Lp(Ω) and we will
check that F ⊂

⋃
v∈F Bε(v), where Bε(u) denotes the ball of center u and radius ε in

Lp(Ω), namely that for every u ∈ F there exists v ∈ F such that ∥u − v∥Lp(Ω) < ε. Let
ν > 0 be a constant that we will choose later, the candidate F is defined by

F = {v ∈ Lp(Ω) : v is constant in each Qi and v(x) ∈ νZ ∩ [−K,K] ∀x ∈ Ω} .

Given u ∈ F, we can take v ∈ F such that ∥v − uδ∥L∞(Ω) < ν. Let us estimate

∥u− v∥Lp(Ω) ≤ ∥u− uδ∥Lp(Ω) + |Ω|
1
p ∥uδ − v∥L∞(Ω) ≤ ε

3 + |Ω|
1
pν.

Therefore, taking ν = ε

3|Ω|
1
p

, we have that ∥u− v∥Lp(Ω) < ε. Since ε > 0 is arbitrary, this
shows that F is totally bounded and concludes the proof of this implication.

Let us now prove the second point : let Q be a cube of side δ > 0 and assume first
that u ∈ W 1,p(Q) ∩ C∞(Q). Then

∥u− uδ∥L1(Q) =
∫

Q

∣∣∣∣u(x) − 1
δd

∫
Q

u(y)dy
∣∣∣∣ dx ≤

∫
Q

1
δd

∫
Q

|u(x) − u(y)|dydx. (2)

We estimate |u(x) − u(y)| ≤
∫ 1

0 |Du(x+ t(y − x))||y − x|dt and since for every x, y ∈ Q,
we have |x− y| ≤ δ

√
n, we can continue the estimate (2)

∥u− uδ∥L1(Q) ≤
√
n

δn−1

∫
Q

∫
Q

∫ 1

0
|Du(x+ t(y − x))||y − x|dtdydx

=
√
n

δn−1

∫ 1

0

∫
Q

∫
Q

|Du(x+ t(y − x))||y − x|dydxdt

=
√
n

δn−1

∫ 1

0

1
td

∫
Q

∫
(1−t)x+tQ

|Du(z)|dzdxdt

=
√
n

δn−1

∫ 1

0

1
td

∫
Q

∫
Q

|Du(z)|1{(1−t)x+tQ}(z)dzdxdt,

(3)

where we used Fubini, the change of variable z = x + t(y − x) and in the last line
we observed that, since Q is convex, for every x, y ∈ Q and every t ∈ [0, 1], the point
x+ t(y− x) ∈ Q. We want to apply Fubini to exchange the integrals in dx and dz, so we
observe that

z ∈ {(1 − t)x+ tQ} ⇐⇒ x ∈ z

1 − t
− t

1 − t
Q.
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We continue in (3) :

∥u− uδ∥L1(Q) ≤
√
n

δn−1

∫ 1

0

1
td

∫
Q

|Du(z)|
∫

Q

1 z
1−t

− t
1−t

Q(x)dxdzdt

=
√
n

δn−1

∫ 1

0

1
td

∫
Q

|Du(z)|Ld

(
Q ∩ z

1 − t
− t

1 − t
Q

)
dzdt

≤
√
n

δn−1

∫ 1

0

1
td

min
{

Ld(Q),Ld

(
t

1 − t
Q

)}∫
Q

|Du(z)|dzdt.

(4)

For t ≤ 1
2 , we have t/(1 − t) ≤ 2t ≤ 1 so that min

{
Ld(Q),Ld

(
t

1−t
Q
)}

= (2t)dLd(Q)
and for t > 1

2 , we have min
{

Ld(Q),Ld
(

t
1−t
Q
)}

= Ld(Q) ≤ (2t)dLd(Q). We therefore
continue in (5) :

∥u− uδ∥L1(Q) ≤
√
d

δd−1

∫ 1

0

1
td

(2t)dLd(Q)
∫

Q

|Du(z)|dzdt

=2d
√
dδ∥Du∥L1(Q).

(5)

So far we showed the estimate for smooth functions inside a cube. In order to deal with
the general case let Ω′ ⊂ Rd be a bounded set such that Ω + B(0, 1) ⊂ Ω′ in such a way
that there exists an extension operator E : W 1,p(Ω) → W 1,p

0 (Ω′). Being C∞
c (Ω′) dense in

W 1,p
0 (Ω′), we can find (uε)ε ⊂ C∞

c (Ω′) such that ∥uε − E(u)∥W 1,p(Ω′) → 0. Moreover, for
every λ > 0, we can find a set Ωλ such that

1. Ω ⊂ Ωλ ⊂⊂ Ω′ ;
2. Ωλ is the union of essentially disjoint n-cubes of side σ, where σ = σ(λ) is chosen

so small that
— σ < δ ;
— Ld(Ωλ \ Ω) < σ ;
— ∥DE(u)∥L1(Ωλ\Ω) < λ.

We can then compute
∥u− uδ∥L1(Ω) ≤∥E(u) − uδ∥L1(Ωλ)

≤∥E(u) − uε∥L1(Ωλ) + ∥uδ − uε∥L1(Ωλ)

≤∥E(u) − uε∥L1(Ωλ) +
∑

Q∈Ωλ

∥uδ − uε∥L1(Q)

≤∥E(u) − uε∥L1(Ωλ) + 2d
√
dσ

∑
Q∈Ωλ

∥Duε∥L1(Q)

≤∥E(u) − uε∥L1(Ωλ) + 2d
√
dδ∥Duε∥L1(Ω) + 2d

√
dδ∥Duε∥L1(Ωλ\Ω),

where in the fourth inequality we used the estimate proved before. Passing to the limit
as ε → 0 we get

∥u− uδ∥L1(Ω) ≤2d
√
dδ∥Du∥L1(Ω) + 2d

√
dδ∥DE(u)∥L1(Ωλ\Ω)

≤2d
√
dδ∥Du∥L1(Ω) + 2d

√
dδλ
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and passing to the limit as λ → 0 we get the claim

∥u− uδ∥L1(Ω) ≤ 2d
√
dδ∥Du∥L1(Ω).

Exercise 3.3. We can assume that Ω = (0, l) × Rn−1 for some l > 0 since, up to
translation Ω is contained in a set of the form (0, l) × Rn−1 and we can extend all the
elements of W 1,p

0 (Ω) to elements of W 1,p
0 ((0, l) × Rn−1) by setting them equal to 0 in

(0, l) × Rn−1 \ Ω. By density of C∞
c (Ω) in W 1,p

0 (Ω) it is sufficient to prove the statement
for u ∈ C∞

c (Ω) as long as we obtain a constant C independent of u. Let us denote by
x = (z, y) with z ∈ (0, l), y ∈ Rn−1, the coordinates of a generic point z ∈ Ω. For every
(z, y) ∈ Ω it holds

u(z, y) =
∫ z

0

∂u

∂x1
(t, y)dt,

so that

|u(z, y)| ≤
∫ l

0
|Du|(t, y)dt = ∥Du(·, y)∥L1(0,l) ≤ ∥Du(·, y)∥Lp(0,l)l

1/p′
.

Notice that the estimate depends only on y and not on z, therefore we have

∥u∥p
Lp(Ω) =

∫
Ω

|u(z, y)|pdzdy =
∫
Rn−1

(∫ l

0
|u(z, y)|pdz

)
dy

≤
∫
Rn−1

(∫ l

0

(
∥Du(·, y)∥p

Lp(0,l)l
p/p′

)
dz

)
dy

=lp/p′+1
∫
Rn−1

∥Du(·, y)∥p
Lp(0,l)dy

=lp/p′+1∥Du∥p
Lp(Ω).

This proves the first estimate, the second one is an immediate consequence.
Exercise 3.4. We follow the strategy of the proof of Poincaré-Wirtinger inequality from
the lecture.

Suppose by contradiction that there exists a sequence (uh)h∈N such that |{uh = 0}| ≥
α and ∥uh∥Lp(Ω) > h∥Duh∥Lp(Ω), and consider the renormalized sequence

vh = uh

∥uh∥Lp(Ω)
.

We have therefore that ∥vh∥W 1,p(Ω) = ∥vh∥Lp(Ω) + ∥Dvh∥Lp(Ω) ≤ 1 + 1
h
, so that (vh)h is a

bounded sequence in W 1,p(Ω). By Rellich-Kondrasov theorem, there exists u ∈ Lp(Ω) and
a subsequence (that we do not relabel) such that vh → v in Lp(Ω). Since ∥vh∥Lp(Ω) = 1
for every h, then ∥v∥Lp(Ω) = 1. Moreover, since ∥Dvh∥Lp(Ω) → 0 as h → ∞, then exactly
as in the proof of Poincaré-Wirtinger inequality, we deduce that Dv = 0, and, since Ω is
connected this implies that v is constant. Since |{vh = 0}| ≥ α, and the L1 convergence
implies the pointwise a.e. convergence up to subsequences, then also |{v = 0}| ≥ α. Being
v constant, this shows that v = 0 and this contradicts ∥v∥Lp(Ω) = 1.
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Exercise 3.5. The fact that ∥·∥ is a norm follows immediately from the fact that ∥·∥Lp(Ω)
is a norm and the linearity of the divergence operator, therefore we need to check that
W 1,p

div (Ω) is complete. Let uk = (uk
1, . . . , u

k
n) be a Cauchy sequence in W 1,p

div (Ω). In particular
uk is a Cauchy sequence in (Lp(Ω))d and divuk is a Cauchy sequence in Lp(Ω). Therefore,
being (Lp(Ω))n and Lp(Ω) complete, there exist u ∈ (Lp(Ω))n and v ∈ Lp(Ω) such that
uk → u in (Lp(Ω))n and divuk → v in Lp(Ω). In order to complete the proof we need to
prove that v = divu. For any test function φ ∈ C∞

c (Ω) and every k ∈ N it holds∫
Ω
uk · ∇φdx =

∫
Ω

divukφdx

and letting k → ∞ on both sides we obtain∫
Ω
u · ∇φdx =

∫
Ω
vφdx,

namely v = divu.

Exercise 3.6. We check that | · |W θ,p is a seminorm, namely that it is positively homo-
geneous (trivial) and it satisfies the triangular inequality, then we show that the space is
complete.

Given f ∈ W θ,p(Rd), we define ψ(f) ∈ Lp(Rd × Rd) by

ψ(f)(x, y) = |f(x) − f(y)|
|x− y|θ+ d

p

.

Given f, g ∈ W θ,p(Rd), we have that ψ(f + g) ≤ ψ(f) + ψ(g) pointwise a.e., therefore by
the triangular inequality in Lp(Rd × Rd), we have

∥ψ(f + g)∥Lp(Rd×Rd) ≤ ∥ψ(f) + ψ(g)∥Lp(Rd×Rd) ≤ ∥ψ(f)∥Lp(Rd×Rd) + ∥ψ(g)∥Lp(Rd×Rd),

namely the triangular inequality holds true.
Let fn be a Cauchy sequence in W θ,p(Rd). Then fn and ψ(fn) are Cauchy sequences

in Lp(Rd) and Lp(Rd × Rd) respectively. In particular they converge to some f ∈ Lp(Rd)
and g ∈ Lp(Rd × Rd). We still need to check that g = ψ(f). This is true because, up to
subsequences, we can assume that fn and ψ(fn) converge a.e.
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